2021

Eimeria acervulina Microneme Protein 3 Inhibits Apoptosis of the Chicken Duodenal Epithelial Cell by Targeting the Casitas B-Lineage Lymphoma Protein.

Wang P, Jia Y, Han Y, Wang W, Zhu Y, Xu J, Guan C, Ying J, Deng S, Wang J, Zhang X, Chen M, Cheng C*(Co-Corr. Author) and Song H* (2021)  Front. Vet. Sci. 8:636809. doi: 10.3389/fvets.2021.636809

 

PubMed | Full Text

Regulated delayed attenuation improves vaccine efficacy in preventing infection from avian pathogenic Escherichia coli O78 and Salmonella Typhimurium.

Han Y, Luo P, Chen Y, Xu J, Sun J, Guan C, Wang P, Chen M, Zhang X, Zhu Y, Zhu T, Zhai R, Cheng C*(Co-Corr. Author) and Song H* (2021).  Veterinary Microbiology 254 (2021): 109012.

 

PubMed | Full Text

YjbH mediates the oxidative stress response and infection by regulating SpxA1 and the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) in Listeria monocytogenes

Cheng, C., Han, X., Xu, J., Sun, J., Li, K., Han, Y., Chen, M., and Song, H.* (2021). Gut Microbes 13(1): 1-19.

 

PubMed | Full Text

2020

Identification of host protein CBL interacting with Eimeria acervulina microneme protein MIC3.

Wang, P., Zhao, H., Wang, Q., Gao, C., Wu, H., Cheng, C.* (Co-Corr. Author) and Song, H.* (2020). Acta Biochim Biophys Sin: pii: 5879271. doi: 10.1093/abbs/gmaa086.

 

PubMed | Full Text

Listeriolysin O pore-forming activity is required for ERK1/2 phosphorylation during Listeria monocytogenes infection. 

Cheng, C., Sun, J., Yu, H., Ma, T., Guan, C., Zeng, H., Zhang, X., Chen, Z., Song, H. (2020). Front. Immunol. doi: 10.3389/fimmu.2020.01146.

 

PubMed | Full Text

An M29 Aminopeptidase from Listeria Monocytogenes Contributes to In Vitro Bacterial Growth but not to Intracellular Infection.

Zhang, X., Guan, C., Hang, Y., Liu, F., Sun, J., Yu, H., Gan, L., Zeng, H., Zhu, Y., Chen, Z., Song, H., and Cheng, C.* (2020). Microorganisms, 8(1).

 

PubMed | Full Text

2019

Deletion of glutaredoxin promotes oxidative tolerance and intracellular infection in Listeria monocytogenes.

Sun, J., Hang, Y., Han, Y., Zhang, X., Gan, L., Cai, C., Chen, Z., Yang, Y., Song, Q., Shao, C., Yang, Y., Zhou, Y., Wang, X., Cheng, C.* (Co-Corr. Author) and Song, H.* (2019). Virulence 10(1): 910-924.

 

PubMed | Full Text

2018

Flagellar Basal Body Structural Proteins FlhB, FliM, and FliY Are Required for Flagellar-Associated Protein Expression in Listeria monocytogenes.

Cheng, C., Wang H., Ma T., Han X., Yang Y., Sun J., Chen Z., Yu H., Hang Y., Liu F., Fang W., Jiang L., Cai C. and Song H. (2018). Front Microbiol 9: 208.

 

PubMed | Full Text

2017

Carboxyl-Terminal Residues N478 and V479 Required for the Cytolytic Activity of Listeriolysin O Play a Critical Role in Listeria monocytogenes Pathogenicity.

Cheng, C., Jiang L., Ma T., Wang H., Han X., Sun J., Yang Y., Chen Z., Yu H., Hang Y., Liu F., Wang B., Fang W., Huang H., Fang C., Cai C., Freitag N. and Song H. (2017). Front Immunol 8: 1439.

 

PubMed | Full Text

Thioredoxin A Is Essential for Motility and Contributes to Host Infection of Listeria monocytogenes via Redox Interactions.

Cheng, C., Dong Z., Han X., Wang H., Jiang L., Sun J., Yang Y., Ma T., Shao C., Wang X., Chen Z., Fang W., Freitag N. E., Huang H. and Song H. (2017). Front Cell Infect Microbiol 7: 287.

 

PubMed | Full Text

Listeria monocytogenes 10403S arginine repressor ArgR finely tunes arginine metabolism regulation under acidic conditions.

Cheng, C., Dong Z., Han X., Sun J., Wang H., Jiang L., Yang Y., Ma T., Chen Z., Yu J., Fang W. and Song H. (2017). 

Front Microbiol 8: 145.

 

PubMed | Full Text

2015

Listeria monocytogenes varies among strains to maintain intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput microplate-based fluorometry.

Cheng, C., Yang Y., Dong Z., Wang X., Fang C., Yang M., Sun J., Xiao L., Fang W. and Song H. (2015). Front Microbiol 6: 15.

 

PubMed | Full Text

Aminopeptidase T of M29 Family Acts as A Novel Intracellular Virulence Factor for Listeria monocytogenes Infection.

Cheng, C., Wang X., Dong Z., Shao C., Yang Y., Fang W., Fang C., Wang H., Yang M., Jiang L., Zhou X. and Song H. (2015). Sci Rep 5: 17370.

 

PubMed | Full Text

2013

Listeria monocytogenes aguA1, but not aguA2, encodes a functional agmatine deiminase: biochemical characterization of its catalytic properties and roles in acid tolerance.

Cheng, C., Chen J., Fang C., Xia Y., Shan Y., Liu Y., Wen G., Song H. and Fang W. (2013). J Biol Chem 288(37): 26606-26615.

 

PubMed | Full Text

Listeria monocytogenes ArcA contributes to acid tolerance.

Cheng, C., Chen J., Shan Y., Fang C., Liu Y., Xia Y., Song H. and Fang W. (2013). J Med Microbiol 62(Pt 6): 813-821.

 

PubMed | Full Text

2016

Comparative Genomic Analysis Reveals That the 20K and 38K Prophages in Listeria monocytogenes Serovar 4a Strains Lm850658 and M7 Contribute to Genetic Diversity but Not to Virulence.

Fang, C., Cao T., Shan Y., Xia Y., Xin Y., Cheng, C., Song H., Bowman J., Li X., Zhou X. and Fang W. (2016). J Microbiol Biotechnol 26(1): 197-206.

 

PubMed | Full Text

Prevalence and Virulence Characterization of Listeria monocytogenes in Chilled Pork in Zhejiang Province, China.

Fang, C., Shan Y., Cao T., Xia Y., Xin Y., Cheng, C., Song H., Li X. and Fang W. (2016). Foodborne Pathog Dis 13(1): 8-12.

PubMed | Full Text

Engineering Nanoparticle-Coated Bacteria as Oral DNA Vaccines for Cancer Immunotherapy.

Hu, Q., Wu M., Fang C., Cheng, C., Zhao M., Fang W., Chu P. K., Ping Y. and Tang G. (2015). Nano Letters 15(4): 2732-2739.

 

PubMed | Full Text

Immersion infection of germ-free zebrafish with Listeria monocytogenes induces transient expression of innate immune response genes.

Shan, Y., Fang C., Cheng, C., Wang Y., Peng J. and Fang W. (2015). Front Microbiol 6: 373.

 

PubMed | Full Text

Activation of PrfA results in overexpression of virulence factors but does not rescue the pathogenicity of Listeria monocytogenes M7.

Fang, C., Cao T., Cheng, C., Xia Y., Shan Y., Xin Y., Guo N., Li X., Song H. and Fang W. (2015). J Med Microbiol 64(8): 818-827.

 

PubMed | Full Text

Functional characterization of porcine LSm14A in IFN-beta induction.

Wen, G., Zhang Y., Zhang X., Hu H., Zhang H., Cheng, C., Wang X., Li X. and Fang W. (2013). Vet Immunol Immunopathol 155(1-2): 110-116.

 

PubMed | Full Text

2012

Genetic organization of ascB-dapE internalin cluster serves as a potential marker for Listeria monocytogenes sublineages IIA, IIB, and IIC.

Chen, J., Fang C., Zhu N., Lv Y., Cheng, C., Bei Y., Zheng T. and Fang W. (2012). J Microbiol Biotechnol 22(5): 575-584.

 

PubMed | Full Text

Genetic diversity of internalin genes in the ascB-dapE locus among Listeria monocytogenes lineages III and IV strains.

Chen, J., Cheng, C., Lv Y. and Fang W. (2013). J Basic Microbiol 53(9): 778-784.

 

PubMed | Full Text

2011

Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches.

Zhao, H., Chen J., Fang C., Xia Y., Cheng, C., Jiang L. and Fang W. (2011). J Microbiol 49(5): 759-767.

 

PubMed | Full Text

Prevalence of the lmo0036-0043 gene cluster encoding arginine deiminase and agmatine deiminase systems in Listeria monocytogenes.

Chen J.,, Chen F., Cheng, C. and Fang W. (2013). New Microbiol 36(2): 187-192.

 

PubMed | Full Text

Genome sequence of the nonpathogenic Listeria monocytogenes serovar 4a strain M7.

Chen, J., Xia Y., Cheng, C., Fang C., Shan Y., Jin G. and Fang W. (2011). J Bacteriol 193(18): 5019-5020.

 

PubMed | Full Text

Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance.

Chen, J., Cheng, C., Xia Y., Zhao H., Fang C., Shan Y., Wu B. and Fang W. (2011). Microbiology 157(Pt 11): 3150-3161.

 

PubMed | Full Text

Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes.

Chen, J., Chen Q., Jiang L., Cheng, C., Bai F., Wang J., Mo F. and Fang W. (2010). BMC Microbiol 10: 97.

PubMed | Full Text

2010

Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing.

Zhang,Y., Yao, Y., Qiu, X., Wang, G., Hu, Z., Chen, S., Wu, Z., Yuan, N., Gao, H., Wang, J., Song, H., Giradin S. E., and Qian, Y.* (2019). Nat Immunol 20(4): 433-446.

 

PubMed | Full Text

The DegU Orphan Response Regulator Contributes to Heat Stress Resistance in Listeria monocytogenes.

Cheng C, Liu F, Jin H, Xu X, Xu J, Deng S, Xia J, Han Y, Lei L, Zhang X and Song H* (2021)  Front. Cell. Infect. Microbiol., 13 December 2021. doi.org/10.3389/fcimb.2021.761335

 

PubMed | Full Text

Characterization of a DsbA family protein reveals its crucial role in oxidative stress tolerance of Listeria monocytogenes.

Xia J, Luo Y, Chen M, Liu Y, Wang Z, Deng S, Xu J, Han Y, Sun J, Zhang X, Jiang L, Song H and Cheng C*(2023) Microbiology Spectrum, e0306023.  doi: 10.1128/spectrum.03060-23.

 

PubMed | Full Text

 

 

DegU-mediated suppression of carbohydrate uptake in Listeria monocytogenes increases adaptation to oxidative stress.

Chen M, Ren G, Zhang X, Yang L, Ding Q, Sun J, Xia J, Xu J, Jiang L, Fang W, Cheng C*, Song H*(2023)  Appl Environ Microbiol, e0101723. doi: 10.1128/aem.01017-23. 

 

PubMed | Full Text

 

 

Hypoxia-induced HIF-1α promotes Listeria monocytogenes invasion into tilapia.

Wang J, He Z, Cui M, Sun J, Jiang L, Zhuang N, Zhu F, Zhang X, Song H and Cheng C*(2023) Microbiology Spectrum, e0140523. doi 10.1128/spectrum.01405-23.

 

PubMed | Full Text

 

 

Listeria monocytogenes GshF contributes to oxidative stress tolerance via regulation of the phosphoenolpyruvate-carbohydrate phosphotransferase system.

Chen M,  Zhang J,  Xia J,  Sun J, Zhang X, Xu J, Deng S, Han Y, Jiang L, Song H and Cheng C*(2023) Microbiology Spectrum,

e0236523.  doi: 10.1128/spectrum.02365-23.

 

PubMed | Full Text

 

 

The effect of O-antigen length determinant wzz on the immunogenicity of Salmonella Typhimurium for Escherichia coli O2 O-polysaccharides delivery.

 Han Y, Luo P, Zeng H, Wang P, Xu J, Chen P, Chen X, Chen Y, Cao Q, Zhai R, Xia J, Deng S, Cheng A, Cheng, C.*(Co-Corr. Author) and Song, H.* (2023) Veterinary Research, 54(1) :15. doi: 10.1186/s13567-023-01142-4

 

PubMed | Full Text

2023